Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Methods ; 207: 106708, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36940917

RESUMO

There is an increased interest for finding strains able to contribute to plant nutrition and health, since these are desirable for the formulation of agricultural bioinoculants. Obtaining a safe and efficient product requires exhaustive evaluations from which most methods used for this purpose involve the use of substrates or are established under uncontrolled conditions, so that various factors can mask the results of the plant-microorganism interaction. In vitro methods mostly involve the use of Petri Dishes (PD) but limit the results to seed germination. Other methods of germination involve the use of acrylic boxes (GB) allowing for better plant development, but are little known. Methods such as ISTA are widely used to evaluate the physiological quality of seeds in productive terms. Despite their efficiency, these methods have not been previously used to evaluate the effect of plant-microorganism interaction on crops. In the present study, modifications were made to the germination between paper of ISTA (BP) method, and were compared to the PD anf GB methods to evaluate the impact of the bacterium Serratia liquefaciens 385 and the yeast Clavispora lusitaniae Y35 on maize, bean and squash. Through the evaluation of physiological parameters in seed and seedling, the results clearly showed the superiority of the BP method to evaluate the effect of microorganisms since it allows observing a better development in the seedlings in terms of growth of the plumule, a better architecture of the radical system in which the emergence of adventitious secondary roots and differentiated radical hairs is observed in comparison with seedlings obtained under the other methods. Similarly, it was possible to observe the different effects on each of the three crops with respect to the inoculation of the bacteria and yeast. These results were significantly better in seedlings obtained in the BP method independently of the type of crop evaluated, considering the BP method suitable to be applied in large-scale bioprospecting plant-growth-promoting microorganism studies.


Assuntos
Germinação , Saccharomyces cerevisiae , Germinação/fisiologia , Plântula , Desenvolvimento Vegetal , Zea mays , Sementes , Produtos Agrícolas
2.
Front Plant Sci ; 6: 395, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106398

RESUMO

The water soluble carbohydrates (WSC) glucose, fructose, and sucrose are well-known to the great public, but fructans represent another type of WSC that deserves more attention given their prebiotic and immunomodulatory properties in the food context. Although the occurrence of inulin-type fructo-oligosaccharides (FOS) was proposed in the fruit of some banana accessions, little or no information is available neither on the exact identity of the fructan species, nor on the fructan content in different parts of banana plants and among a broader array of banana cultivars. Here, we investigated the WSC composition in leaves, pulp of ripe fruits and rhizomes from mature banana plants of 11 accessions (I to XI), including both cultivated varieties and wild Musa species. High performance anion exchange chromatography with integrated pulsed amperometric detection (HPAEC-IPAD) showed the presence of 1-kestotriose [GF2], inulobiose [F2], inulotriose [F3], 6-kestotriose and 6G-kestotriose (neokestose) fructan species in the pulp of mature fruits of different accessions, but the absence of 1,1-nystose and 1,1,1 kestopentaose and higher degree of polymerization (DP) inulin-type fructans. This fructan fingerprint points at the presence of one or more invertases that are able to use fructose and sucrose as alternative acceptor substrates. Quantification of glucose, fructose, sucrose and 1-kestotriose and principal component analysis (PCA) identified related banana groups, based on their specific WSC profiles. These data provide new insights in the biochemical diversity of wild and cultivated bananas, and shed light on potential roles that fructans may fulfill across species, during plant development and adaptation to changing environments. Furthermore, the promiscuous behavior of banana fruit invertases (sucrose and fructose as acceptor substrates besides water) provides a new avenue to boost future work on structure-function relationships on these enzymes, potentially leading to the development of genuine banana fructosyltransferases that are able to increase fructan content in banana fruits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...